As demands for memory-intensive applications continue to grow, the memory capacity of each computing node is expected to grow at a similar pace. In high-performance computing (HPC) systems, the memory capacity per compute node is decided upon the most demanding application that would likely run on such system, and hence the average capacity per node in future HPC systems is expected to grow significantly. However, since HPC systems run many applications with different capacity demands, a large percentage of the overall memory capacity will likely be underutilized; memory modules can be thought of as private memory for its corresponding computing node. Thus, as HPC systems are moving towards the exascale era, a better utilization of memory is strongly desired. Moreover, upgrading memory system requires significant efforts. Fortunately, disaggregated memory systems promise better utilization by defining regions of global memory, typically referred to as memory blades, which can be accessed by all computing nodes in the system, thus achieving much better utilization. Disaggregated memory systems are expected to be built using dense, power-efficient memory technologies. Thus, emerging nonvolatile memories (NVMs) are placing themselves as the main building blocks for such systems. However, NVMs are slower than DRAM. Therefore, it is expected that each computing node would have a small local memory that is based on either HBM or DRAM, whereas a large shared NVM memory would be accessible by all nodes. Managing such system with global and local memory requires a novel hardware/software co-design to initiate page migration between global and local memory to maximize performance while enabling access to huge shared memory. In this paper we provide support to migrate pages, investigate such memory management aspects and the major system-level aspects that can affect design decisions in disaggregated NVM systems