The astonishing efficiency and accuracy of DNA replication has long suggested that refined rules enforce a single highly reproducible sequence of molecular events during the process. This view was solidified by early demonstrations that DNA unwinding and synthesis are coupled within a stable molecular factory, known as the replisome, which consists of conserved components that each play unique and complementary roles. However, recent single-molecule observations of replisome dynamics have begun to challenge this view, revealing that replication may not be defined by a uniform sequence of events. Instead, multiple exchange pathways, pauses, and DNA loop types appear to dominate replisome function. These observations suggest we must rethink our fundamental assumptions and acknowledge that each replication cycle may involve sampling of alternative, sometimes parallel, pathways. Here, we review our current mechanistic understanding of DNA replication while highlighting findings that exemplify multi-pathway aspects of replisome function and considering the broader implications.