To start DNA replication, the Origin Recognition Complex (ORC) and Cdc6 load a Mcm2-7 double hexamer onto DNA. Without ATP hydrolysis, ORC-Cdc6 recruits one Cdt1-bound Mcm2-7 hexamer, forming an ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) helicase loading intermediate. Here we report a 3.9Å structure of the OCCM on DNA. Flexible Mcm2-7 winged-helix domains (WHD) engage ORC-Cdc6. A three-domain Cdt1 configuration embraces Mcm2, Mcm4, and Mcm6, nearly half of the hexamer. The Cdt1 C-terminal domain extends to the Mcm6 WHD, which binds Orc4 WHD. DNA passes through the ORC-Cdc6 and Mcm2-7 rings. Origin DNA interaction is mediated by an α-helix in Orc4 and positively charged loops in Orc2 and Cdc6. The Mcm2-7 C-tier AAA+ ring is topologically closed by a Mcm5 loop that embraces Mcm2, but the N-tier ring Mcm2-Mcm5 interface remains open. This structure suggests loading mechanics of the first Cdt1-bound Mcm2-7 hexamer by ORC-Cdc6.
In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a pre-Replicative Complex (pre-RC) with a MCM2-7 double-hexamer encircling DNA. Using purified components in the presence of ATPγS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the hetero-heptameric ORC-Cdc6 and the hetero-heptameric Cdt1-MCM2-7, called the OCCM complex. Cryo-EM studies of the 14-protein complex reveal that the two separate heptameric complexes are extensively engaged, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. ORC-Cdc6 undergoes a concerted conformational change into a right-handed spiral with the helical symmetry identical to the DNA double helix. The results show a striking structural similarity between the ORC-Cdc6 helicase loader and the Replication Factor-C clamp loader and suggest a conserved mechanism of action.
In Saccharomyces cerevisiae and higher eukaryotes, the loading of the replicative helicase MCM2-7 onto DNA requires the combined activities of ORC, Cdc6, and Cdt1. These proteins load MCM2-7 in an unknown way into a double hexamer around DNA. Here we show that MCM2-7 recruitment by ORC/Cdc6 is blocked by an autoinhibitory domain in the C terminus of Mcm6. Interestingly, Cdt1 can overcome this inhibitory activity, and consequently the Cdt1-MCM2-7 complex activates ORC/Cdc6 ATP-hydrolysis to promote helicase loading. While Cdc6 ATPase activity is known to facilitate Cdt1 release and MCM2-7 loading, we discovered that Orc1 ATP-hydrolysis is equally important in this process. Moreover, we found that Orc1/Cdc6 ATP-hydrolysis promotes the formation of the ORC/Cdc6/MCM2-7 (OCM) complex, which functions in MCM2-7 double-hexamer assembly. Importantly, CDK-dependent phosphorylation of ORC inhibits OCM establishment to ensure once per cell cycle replication. In summary, this work reveals multiple critical mechanisms that redefine our understanding of DNA licensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.