An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform is driven by the Mykonos-V LTD accelerator to drive a coaxial MITL with a millimeter-scale anode-cathode gap. The experiments conducted quantify the current loss in the MITL with respect to vacuum pumpdown time and vacuum pressure. MITL gaps between 1.0 mm and 1.3 mm were tested. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current losses of 40%-60% of the peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps.