The inductively-heated plasma generator IPG6-B at Baylor University has been established and characterized in previous years for use as a flexible experimental research facility across multiple applications. The system uses a similar plasma generator design to its twin-facilities at the University of Stuttgart (IPG6-S) and the University of Kentucky (IPG6-UKY). The similarity between these three devices offers the advantage to reproduce results and provides comparability to achieve cross-referencing and verification. Sub-and supersonic flow conditions for Mach numbers between M a = 0.3 − 1.4 have been characterized for air, argon, helium and nitrogen using a pitot probe. Overall power coupling efficiency as well as specific bulk enthalpy of the flow have been determined by calorimeter measurements to be between η = 0.05 − 0.45 and h s = 5 − 35 MJ kg −1 respectively depending on gas type and pressure. Electron temperatures of T e = 1 − 2 eV and densities n e = 10 18 − 10 20 m −3 have been measured using an electrostatic probe system. At Baylor University, laboratory experiments in the areas of astrophysics, geophysics as well as fundamental research on complex (dusty) plasmas are planned. The study of fundamental processes in low-temperature plasmas connects directly to electric propulsion systems.