The post-injury responses of retinal ganglion cells elicit a number of glial reactions which have not been completely understood. The bilateral pattern of non-neuronal retinal cell proliferation was examined in association with the differential fates of unilaterally injured adult retinal ganglion cells by means of bromodeoxyuridine (BrdU) immunocytochemistry. Lateralization of the glioproliferative events was studied by analysing both the experimental and the uninjured contralateral as well as matched retinas of sham-operated animals. Control adult rat retina included very few BrdU-positive cells within the nerve fibre and ganglion cell layers; however, experimental retinas of degenerating groups exhibited statistically significantly higher densities of newborn cells in most layers. Clusters of labelled cells were found in the inner plexiform layer related to OX-42 staining, indicating their microglial nature. Indeed, double-labelling experiments, after short-term unilateral optic nerve crushing, identified proliferating retinal glial cells in vivo. Both types of glia, astroglial and microglial cells, exhibited BrdU-positive labelling in injured as well as uninjured experimental rat retinas. Moreover, microglial proliferating cells were also identified in explanted retinal pieces after 2 days in culture. Affected and contralateral retinas responded similarly to the unilateral experimental manipulations applied with respect to BrdU labelling. The acute glial responses observed suggest that bilateral glial proliferation might represent a common response related to degeneration events in both retinas, i.e. ipsi- and contralateral to the experimental injury.