Light field (LF) rendering is widely used in free viewpoint video systems (FVV). Different methods have been proposed to employ depth maps to improve the rendering quality. However, estimation of depth is often error-prone. In this paper, a new method based on the concept of effective sampling density (ESD) is proposed for evaluating the depth-based LF rendering algorithms at different levels of errors in the depth estimation. In addition, for a given rendering quality, we provide an estimation of number of rays required in the interpolation algorithm to compensate for the adverse effect caused by errors in depth maps. The proposed method is particularly useful in designing a rendering algorithm with inaccurate knowledge of depth to achieve the required rendering quality. Both the theoretical study and numerical simulations have verified the efficacy of the proposed method.
OPTIMIZATION OF THE NUMBER OF RAYS IN INTERPOLATION FOR LIGHT FIELD BASED FREE VIEWPOINT SYSTEMS
Hooman Shidanshidi, Farzad Safaei, Wanqing LiICT Research Institute, University of Wollongong, Australia hooman@uow.edu.au, farzad@uow.edu, wanqing@uow.edu.au ABSTRACT Light field (LF) rendering is widely used in free viewpoint video systems (FVV). Different methods have been proposed to employ depth maps to improve the rendering quality. However, estimation of depth is often error-prone. In this paper, a new method based on the concept of effective sampling density (ESD) is proposed for evaluating the depth-based LF rendering algorithms at different levels of errors in the depth estimation. In addition, for a given rendering quality, we provide an estimation of number of rays required in the interpolation algorithm to compensate for the adverse effect caused by errors in depth maps. The proposed method is particularly useful in designing a rendering algorithm with inaccurate knowledge of depth to achieve the required rendering quality. Both the theoretical study and numerical simulations have verified the efficacy of the proposed method.