We have developed a fully-lithographic electrical-substitution planar bolometric-radiometer (PBR) that employs multiwall vertically-aligned carbon nanotubes (VACNT) as the absorber and thermistor, micro-machined Si as the weak thermal link and thin-film Mo as the electrical heater. The near-unity absorption of the VACNT over a broad wavelength range permits a planar geometry, compatible with lithographic fabrication. We present performance results on a PBR with an absorption of 0.999 35 at 1550 nm, a thermal conductance of 456 µW K −1 at 4 K and a time constant (1/e) of 7.7 ms. A single measurement of approximately 100 µW optical power at 1550 nm achieved in less than 100 s yields an expanded uncertainty of 0.14% (k = 2). We also observe an elevated superconducting transition temperature of 3.884 K for the Mo heater, which opens the possibility of future devices incorporating more sensitive thermistors and superconducting thin-film wiring.