In ground-based astronomy, starlight distorted by the atmosphere couples poorly into single-mode waveguides but a correction by adaptive optics, even if only partial, can boost coupling into the few-mode regime allowing the use of photonic lanterns to convert into multiple single-mode beams. Corrected wavefronts result in focal patterns that couple mostly with the circularly symmetric waveguide modes. A mode-selective photonic lantern is hence proposed to convert the multimode light into a subset of the single-mode waveguides of the standard photonic lantern, thereby reducing the required number of outputs. We ran simulations to show that only two out of the six waveguides of a 1 × 6 photonic lantern carry > 95% of the coupled light to the outputs at D/r 0 < 10 if the wavefront is partially corrected and the photonic lantern is made mode-selective.