We employ coupled wave theory to enumerate the lasing modes of structurally chiral lasers. The elliptical modes are shown to be fundamentally distinct from those of a scalar distributed feedback laser. High threshold modes are shown to lase with the opposite chirality as the active medium, in contrast to their low-threshold counterparts that lase with the same chirality as the active medium. The lasing mode structure suggests the intriguing possibility of dynamically changing the polarization handedness of a chiral laser, as well as the possibility of lasing within the forbidden band-gap region. These observations arise from the fundamental interplay between the distributed chirality-preserving reflections within the active medium and the localized chirality-reversing reflections at the medium's boundaries.