Photonic crystal fibres exhibiting endlessly single-mode operation and dispersion zero in the range 1040 to 1100 nm are demonstrated. A sub-ns pump source at 1064 nm generates a parametric output at 732 nm with an efficiency of 35%, or parametric gain of 55 dB at 1315 nm. A broad, flat supercontinuum extending from 500 nm to beyond 1750 nm is also demonstrated using the same pump source.
Spiral twisting offers additional opportunities for controlling the loss, dispersion, and polarization state of light in optical fibers with noncircular guiding cores. Here, we report an effect that appears in continuously twisted photonic crystal fiber. Guided by the helical lattice of hollow channels, cladding light is forced to follow a spiral path. This diverts a fraction of the axial momentum flow into the azimuthal direction, leading to the formation of discrete orbital angular momentum states at wavelengths that scale linearly with the twist rate. Core-guided light phase-matches topologically to these leaky states, causing a series of dips in the transmitted spectrum. Twisted photonic crystal fiber has potential applications in, for example, band-rejection filters and dispersion control.
Photonic crystal fibres (PCFs) offer greatly enhanced design freedom compared to standard optical fibres. For example, they allow precise control of the chromatic dispersion (CD) profile--the frequency dependence of propagation speed--over a broad wavelength range. This permits studies of nonlinear pulse propagation in previously inaccessible parameter regimes. Here we report on spectral broadening of 100-fs pulses in PCFs with anomalously flat CD profiles. Maps of the spectral and spatio-temporal behaviour as a function of power show that dramatic conversion (to both longer and shorter wavelengths) can occur in remarkably short lengths of fibre, depending on the magnitude and shape of the CD profile. Because the PCFs used are single-mode at all wavelengths, the light always emerges in a fundamental guided mode. Excellent agreement is obtained between the experimental results and numerical solutions of the nonlinear wave equation, indicating that the underlying processes can be reliably modelled. These results show how, through appropriate choice of CD, nonlinearities can be efficiently harnessed to generate laser light at new wavelengths.
We report on the spectral broadening of ~1 μJ 30 fs pulses propagating in an Ar-filled hollow-core photonic crystal fiber. In contrast with supercontinuum generation in a solid-core photonic crystal fiber, the absence of Raman and unique pressure-controlled dispersion results in efficient emission of dispersive waves in the deep-UV region. The UV light emerges in the single-lobed fundamental mode and is tunable from 200 to 320 nm by varying the pulse energy and gas pressure. The setup is extremely simple, involving <1 m of a gas-filled photonic crystal fiber, and the UV signal is stable and bright, with experimental IR to deep-UV conversion efficiencies as high as 8%. The source is of immediate interest in applications demanding high spatial coherence, such as laser lithography or confocal microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.