Photonic crystal fibres (PCFs) offer greatly enhanced design freedom compared to standard optical fibres. For example, they allow precise control of the chromatic dispersion (CD) profile--the frequency dependence of propagation speed--over a broad wavelength range. This permits studies of nonlinear pulse propagation in previously inaccessible parameter regimes. Here we report on spectral broadening of 100-fs pulses in PCFs with anomalously flat CD profiles. Maps of the spectral and spatio-temporal behaviour as a function of power show that dramatic conversion (to both longer and shorter wavelengths) can occur in remarkably short lengths of fibre, depending on the magnitude and shape of the CD profile. Because the PCFs used are single-mode at all wavelengths, the light always emerges in a fundamental guided mode. Excellent agreement is obtained between the experimental results and numerical solutions of the nonlinear wave equation, indicating that the underlying processes can be reliably modelled. These results show how, through appropriate choice of CD, nonlinearities can be efficiently harnessed to generate laser light at new wavelengths.
We demonstrate photonic crystal fibers with ultra-flattened, near zero dispersion. Two micro-structured fibers showing dispersion of 0 +/- 0.6 ps/nm.km from 1.24 microm-1.44 microm wavelength and 0 +/- 1.2 ps/nm.km over 1 microm-1.6 microm wavelength have been measured.
We report the fabrication and properties of soft glass photonic crystal fibers (PCF's) for supercontinuum generation. The fibers have zero or anomalous group velocity dispersion at wavelengths around 1550 nm, and approximately an order of magnitude higher nonlinearity than attainable in comparable silica fibers. We demonstrate the generation of an ultrabroad supercontinuum spanning at least 350 nm to 2200 nm using a 1550 nm ultrafast pump source.
We report the excitation by flexural acoustic waves of an individual cladding mode in a single-mode photonic crystal fiber. The propagation constant and the field distributions of the mode have been investigated by use of this technique. The results give the basis for developing a family of acousto-optic devices based on photonic crystal fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.