In this paper, we comparatively evaluate two photonic packet switch architectures with WDM-FDL buffers for synchronized variable length packets. The first one is an output buffer type switch, which stores packets in the FDL buffer attached to each output port. Another is a shared buffer type switch, which stores packets in the shared FDL buffer. The performance of a switch is greatly influenced by its architecture and the packet scheduling algorithm. We compare the performance of these two packet switches by applying different packet scheduling algorithms. Through simulation experiments, we show that each architecture has a parameter region for achieving a better performance. For the shared buffer type switch, we found that void space introduces unacceptable performance degradation when the traffic load is high. Accordingly, we propose a void space reduction method. Our simulation results show that our proposed method enables to the shared buffer type switch to outperform the output buffer type switch even under high traffic load conditions.