Fluorescence and reflectance (or interactance) are promising techniques for measuring fruit quality and condition. Our previous research showed that a hyperspectral imaging technique integrating fluorescence and reflectance could improve predictions of selected quality parameters compared to single sensing techniques. The objective of this research was to use a low cost spectrometer for rapid acquisition of fluorescence and interactance spectra from apples and develop an algorithm integrating the two types of data for predicting skin and flesh color, fruit firmness, starch index, soluble solids content, and titratable acid. Experiments were performed to measure UV light induced transient fluorescence and interactance spectra from 'Golden Delicious' apples that were harvested over a period of four weeks during the 2005 harvest season. Standard destructive tests were performed to measure maturity parameters from the apples. Principal component (PC) analysis was applied to the interactance and fluorescence data. A back-propagation feedforward neural network with the inputs of PC data was used to predict individual maturity parameters. Interactance mode was consistently better than fluorescence mode in predicting the maturity parameters. Integrating interactance and fluorescence improved predictions of all parameters except flesh chroma; values of the correlation coefficient for firmness, soluble solids content, starch index, and skin and flesh hue were 0.77, 0.77, 0.89, 0.99, and 0.96 respectively, with the corresponding standard errors of 6.93 N, 0.90%, 0.97 g/L, 0.013 rad, and 0.013 rad. These results represented 4.1% to 23.5% improvements in terms of standard error, in comparison with the better results from the two single sensing methods. Integrating interactance and fluorescence can better assess apple maturity and quality.