Abstract:Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new twodimensional (2D) material that holds promise for electronic and photonic technology. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectrum range from visible to mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that match well with the absorption edge, indicating they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other twodimensional materials in electronic and opto-electronic applications.Page 3 of 17! ! Atomically thin 2D crystals have emerged as a new class of materials with unique material properties that are potentially important for electronic and photonic technologies [1][2][3][4][5][6][7][8][9][10] . Various 2D crystals have been uncovered, ranging from metallic (and superconducting) NbSe 2 and semimetallic graphene to semiconducting MoS 2 and insulating hexagonal boron nitride (hBN).The energy bandgap, a defining characteristic of an electronic material, varies correspondingly from 0 (in metals and graphene) to 5.8 eV (in hBN) in these 2D crystals. Despite the rich variety currently available, 2D materials with a bandgap in the range from 0.3 eV to 1.5 eV are notably missing 11 . Such a bandgap corresponds to a spectral range from mid-infrared to near-infrared that is important for optoelectronic technologies such as telecommunication and solar energy harvesting. It is therefore desirable to have 2D materials with a bandgap that falls in this range, and in particular, matches that of the technologically important silicon (bandgap = 1.1 eV) and III-V semiconductors like InGaAs, without compromising sample mobility 12 .Monolayer and few-layer phosphorene are predicted to bridge the much needed bandgap range from 0.3 to 2 eV (Refs. 13-17). Inside monolayer phosphorene, each phosphorus atom is covalently bonded with three adjacent phosphorus atoms to form a puckered honeycomb structure 18 . The three near sp 3 bonds together with the lone-pair orbital take up all five valence electrons of phosphorus, so monolayer phosphorene is a semiconductor with a predicted direct optical bandgap of ~ 1.5 eV at the Î point of the Brillouin zone. The bandgap in few-layer phosphorene can be strongly modified by interlayer interactions, which leads to a bandgap that decreases with phosphorene film thickness, eventually reaching 0.3 eV in the bulk limit.Experimental observations of layer-dependent band structure in phosphorene, on the other hand, have been rather limited. Previously, photoluminescence (PL) spectroscopy has been used to probe the bandgap of monolayer and few-layer phosphorene 8,[19][20][21][22] . Such studies, howeve...