From unravelling the most fundamental phenomena to enabling applications that impact our everyday lives, the nanoscale world holds great promise for science, technology, and medicine. However, the extent of its practical realization relies on manufacturing at the nanoscale. Among the various nanomanufacturing approaches being investigated, the bottom‐up approach involving assembly of colloidal nanoparticles as building blocks is promising. Compared to a top‐down lithographic approach, particle assembly exhibits advantages such as smaller feature size, finer control of chemical composition, less defects, lower material wastage, and higher scalability. The capability to assemble colloidal particles one by one or “digitally” has been heavily sought as it mimics the natural method of making matter and enables construction of nanomaterials with sophisticated architectures. An insight into the tools and techniques for digital assembly of particles, including their working mechanisms and demonstrated particle assemblies, is provided. Examples of nanomaterials and nanodevices are presented to demonstrate the strength of digital assembly in nanomanufacturing.