Neural Architecture Search (NAS) is a popular method for automatically designing optimized architectures for high-performance deep learning. In this approach, it is common to use bilevel optimization where one optimizes the model weights over the training data (lower-level problem) and various hyperparameters such as the configuration of the architecture over the validation data (upper-level problem). This paper explores the statistical aspects of such problems with train-validation splits. In practice, the lower-level problem is often overparameterized and can easily achieve zero loss. Thus, a-priori it seems impossible to distinguish the right hyperparameters based on training loss alone which motivates a better understanding of the role of train-validation split. To this aim this work establishes the following results:• We show that refined properties of the validation loss such as risk and hyper-gradients are indicative of those of the true test loss. This reveals that the upper-level problem helps select the most generalizable model and prevent overfitting with a near-minimal validation sample size. Importantly, this is established for continuous spaces -which are highly relevant for popular differentiable search schemes.• We establish generalization bounds for NAS problems with an emphasis on an activation search problem. When optimized with gradient-descent, we show that the train-validation procedure returns the best (model, architecture) pair even if all architectures can perfectly fit the training data to achieve zero error.• Finally, we highlight rigorous connections between NAS, multiple kernel learning, and low-rank matrix learning. The latter leads to novel algorithmic insights where the solution of the upper problem can be accurately learned via efficient spectral methods to achieve near-minimal risk.