In this work, we propose a multifishing area prey-predator discrete-time model which describes the interaction between the prey and middle and top predators in various areas, which are connected by their movements to their neighbors, to provide realistic description prey effects of two predators. A grid of colored cells is presented to illustrate the entire domain; each cell may represent a subdomain or area. Next, we propose two harvesting control strategies that focus on maximizing the biomass of prey, in the targeted area, and minimizing the biomass of middle and top predators coming from the neighborhood of this targeted area to ensure sustainability and maintain a differential chain system. Theoretically, we have proved the existence of optimal controls, and we have given a characterization of controls in terms of states and adjoint functions based on a discrete version of Pontryagin’s maximum principle. To illustrate the theoretical results obtained, we propose numerical simulations for several scenarios applying the forward-backward sweep method (FBSM) to solve our optimality system in an iterative process.