The paper addresses the problem of efficiently deploying sensors in spatial environments, e.g. buildings, for the purposes of monitoring spatio-temporal environmental phenomena. By modelling the environmental fields using spatio-temporal Gaussian processes, a new and efficient optimality-cost function of minimizing prediction uncertainties is proposed to find the best sensor locations. Though the environmental processes spatially and temporally vary, the proposed approach of choosing sensor positions is proven not to be affected by time variations, which significantly reduces computational complexity of the optimization problem. The sensor deployment optimization problem is then solved by a practical and feasible polynomial algorithm, where its solutions are theoretically proven to be guaranteed. The proposed method is also theoretically and experimentally compared with the existing works. The effectiveness of the proposed algorithm is demonstrated by implementation in a real tested space in a university building, where the obtained results are highly promising.