2019
DOI: 10.1002/hyp.13574
|View full text |Cite
|
Sign up to set email alerts
|

Optimal design of snow stake networks to estimate snow depth in an alpine mountain range

Abstract: Monitoring and estimation of snow depth in alpine catchments is needed for a proper assessment of management alternatives for water supply in these water resources systems. The distribution of snowpack thickness is usually approached by using field data that come from snow samples collected at a given number of locations that constitute the monitoring network. Optimal design of this network is required to obtain the best possible estimates. Assuming that there is an existing monitoring network, its optimizatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 31 publications
0
3
0
1
Order By: Relevance
“…In future iterations of this model, the model could be trained on large databases of publicly available time‐lapse snow pole data sets to achieve accuracy across multiple domains. Many studies reference snow pole data sets (Collados‐Lara et al., 2020; Cosgrove et al., 2021; Currier et al., 2016; Hofmeester et al., 2019; McCreight et al., 2014), but currently no standardized labeling framework or comprehensive database exists to consolidate across sources as in other domains (e.g., ImageNet; Deng et al., 2009). Future work could explore publishing a database of multiple data sets or a standardized labeling framework, lowering the threshold for future model training and testing.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…In future iterations of this model, the model could be trained on large databases of publicly available time‐lapse snow pole data sets to achieve accuracy across multiple domains. Many studies reference snow pole data sets (Collados‐Lara et al., 2020; Cosgrove et al., 2021; Currier et al., 2016; Hofmeester et al., 2019; McCreight et al., 2014), but currently no standardized labeling framework or comprehensive database exists to consolidate across sources as in other domains (e.g., ImageNet; Deng et al., 2009). Future work could explore publishing a database of multiple data sets or a standardized labeling framework, lowering the threshold for future model training and testing.…”
Section: Discussionmentioning
confidence: 99%
“…The labeling demand increases in year‐to‐year studies, and when networks are installed in large watersheds or habitat ranges where upwards of hundreds of cameras have been installed at a time (Genthon et al., 2016; Kohler et al., 2006; Schöner et al., 2009). Furthermore, there are dozens of research groups utilizing time‐lapse cameras with snow poles, but snow pole designs vary in color and pattern depending on the study needs (Collados‐Lara et al., 2020; Cosgrove et al., 2021; Currier et al., 2016; Hofmeester et al., 2019; McCreight et al., 2014). The result is an enormous amount of data and a need for a scalable method to improve automated labeling.…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, there is a need to more thoroughly assess what, when, and where to measure (Figure 1). Geostatistical approaches have been used to determine the optimal locations for temperature (Amorim et al, 2012), precipitation (Pardo‐Igúzquiza, 1998), and snow depth (Collados‐Lara et al, 2020) monitoring networks. Machine learning can also be used to determine the optimal network design (Chen et al, 2022; Oroza et al, 2016).…”
Section: Necessity and Advantages Of Determining The Value Of Datamentioning
confidence: 99%
“…En cualquier caso, los datos procedentes de las balizas han permitido realizar diversos trabajos científicos que han ayudado a avanzar en el conocimiento de la dinámica del manto de nieve y su relación con la hidroclimatología de la península ibérica. Algunos ejemplos los podemos encontrar en estudios hidrológicos , estudios de la variabilidad de los eventos de nevadas , estudios de tendencias Morán-Tejeda et al, 2013), validación in situ de información por satélite (Juan Collados-Lara et al, 2016), o incluso utilizar la información procedente de los jalones para reproducir el manto de nieve de manera distribuida (Collados-Lara et al, 2020, 2017Nogués-Bravo, 2006, 2005) entre otros. De forma semejante a la red ERHIN, pero en la vertiente francesa de los Pirineos, Meteofrance ha instalado la red NIVOSÊ, con 9 medidores automáticos de espesor del manto de nieve junto a estaciones automáticas de alta montaña.…”
Section: Información Disponible Del Manto De Nieveunclassified