In the present paper we give some necessary conditions that satisfy the solutions of an infinite system of ordinary differential equations. We investigate the behavior of the solutions of a general system of equations, regarding the norm of a Banach function space based on a vector measure. To this aim we construct a vector measure by an standard procedure. Assuming that the solution of each individual equation of the system belongs to a Banach function space based on scalar measures we deduce, with natural conditions, that a solution of such system belongs to a Banach function space based on a vector measure. We also give an example of a system of non-linear Bernoulli equations and show the relation with an equation involving the integral operator.Mathematics Subject Classification. Primary 46G10; Secondary 47N20, 46N20.