Diffusion processes governed by stochastic differential equations (SDEs) are a well established tool for modelling continuous time data from a wide range of areas. Consequently, techniques have been developed to estimate diffusion parameters from partial and discrete observations. Likelihood based inference can be problematic as closed form transition densities are rarely available. One widely used solution involves the introduction of latent data points between every pair of observations to allow an Euler-Maruyama approximation of the true transition densities to become accurate. In recent literature, Markov chain Monte Carlo (MCMC) methods have been used to sample the posterior distribution of latent data and model parameters; however, naive schemes suffer from a mixing problem that worsens with the degree of augmentation. In this paper, we explore an MCMC scheme whose performance is not adversely affected by the number of latent values. We illustrate the methodology by estimating parameters governing an auto-regulatory gene network, using partial and discrete data that is subject to measurement error.