Orbits that are frozen in an averaged model, including the effect of a disturbing body laying on the equatorial plane of the primary body and the influence of the oblateness of the primary body, have been applied to probes orbiting the Moon. In this scenario, the main disturbing body is represented by the Earth, which is characterized by a certain obliquity with respect to the equatorial plane of the Moon. As a consequence of this, and of the perturbing effects that are not included in the averaged model, such solutions are not perfectly frozen. However, the orbit eccentricity, inclination, and argument of pericenter present limited variations and can be set to guarantee the fulfillment of requirements useful for lunar telecommunication missions and navigation services. Taking advantage of this, a practical case of a Moon-based mission was investigated to propose useful solutions for potential near-future applications.