We propose a setting for two-phase opinion dynamics in social networks, where a node's final opinion in the first phase acts as its initial biased opinion in the second phase. In this setting, we study the problem of two camps aiming to maximize adoption of their respective opinions, by strategically investing on nodes in the two phases. A node's initial opinion in the second phase naturally plays a key role in determining the final opinion of that node, and hence also of other nodes in the network due to its influence on them. However, more importantly, this bias also determines the effectiveness of a camp's investment on that node in the second phase. In order to formalize this two-phase investment setting, we propose an extension of Friedkin-Johnsen model, and hence formulate the utility functions of the camps. We arrive at a decision parameter which can be interpreted as two-phase Katz centrality. There is a natural tradeoff while splitting the available budget between the two phases. A lower investment in the first phase results in worse initial biases in the network for the second phase. On the other hand, a higher investment in the first phase spares a lower available budget for the second phase, resulting in an inability to fully harness the influenced biases. We first analyze the non-competitive case where only one camp invests, $ A previous, preliminary, concise version of this paper was presented at The Joint International Workshop on Social Influence Analysis and Mining Actionable Insights from Social Networks (workshop with IJCAI-ECAI), Stockholm, Sweden, 2018 [1].for which we present a polynomial time algorithm for determining an optimal way to split the camp's budget between the two phases. We then analyze the case of competing camps, where we show the existence of Nash equilibrium and that it can be computed in polynomial time under reasonable assumptions. We conclude our study with simulations on real-world network datasets, in order to quantify the effects of the initial biases and the weightage attributed by nodes to their initial biases, as well as that of a camp deviating from its equilibrium strategy. Our main conclusion is that, if nodes attribute high weightage to their initial biases, it is advantageous to have a high investment in the first phase, so as to effectively influence the biases to be harnessed in the second phase.