The problem of maximizing information diffusion, given a certain budget expressed in terms of the number of seed nodes, is an important topic in social networks research. Existing literature focuses on single phase diffusion where all seed nodes are selected at the beginning of diffusion and all the selected nodes are activated simultaneously. This paper undertakes a detailed investigation of the effect of selecting and activating seed nodes in multiple phases. Specifically, we study diffusion in two phases assuming the well-studied independent cascade model. First, we formulate an objective function for two-phase diffusion, investigate its properties, and propose efficient algorithms for finding seed nodes in the two phases. Next, we study two associated problems: (1) budget splitting which seeks to optimally split the total budget between the two phases and (2) scheduling which seeks to determine an optimal delay after which to commence the second phase. Our main conclusions include: (a) under strict temporal constraints, use single phase diffusion, (b) under moderate temporal constraints, use two-phase diffusion with a short delay while allocating most of the budget to the first phase, and (c) when there are no temporal constraints, use two-phase diffusion with a long delay while allocating roughly one-third of the budget to the first phase.Comment: The original publication appears in IEEE Transactions on Network Science and Engineering, volume 3, number 4, pages 197-210 and is available at http://ieeexplore.ieee.org/abstract/document/7570252
We model the competition over mining resources and over several cryptocurrencies as a non-cooperative game. Leveraging results about congestion games, we establish conditions for the existence of pure Nash equilibria and provide efficient algorithms for finding such equilibria. We account for multiple system models, varying according to the way that mining resources are allocated and shared and according to the granularity at which mining puzzle complexity is adjusted. When constraints on resources are included, the resulting game is a constrained resource allocation game for which we characterize a normalized Nash equilibrium. Under the proposed models, we provide structural properties of the corresponding types of equilibrium, e.g., establishing conditions under which at most two mining infrastructures will be active or under which no miners will have incentives to mine a given cryptocurrency.
We model the competition over several blockchains characterizing multiple cryptocurrencies as a non-cooperative game. Then, we specialize our results to two instances of the general game, showing properties of the Nash equilibrium. In particular, leveraging results about congestion games, we establish the existence of pure Nash equilibria and provide efficient algorithms for finding such equilibria.
We study the problem of optimally investing in nodes of a social network in a competitive setting, where two camps aim to maximize adoption of their opinions by the population. In particular, we consider the possibility of campaigning in multiple phases, where the final opinion of a node in a phase acts as its initial biased opinion for the following phase. Using an extension of the popular DeGroot-Friedkin model, we formulate the utility functions of the camps, and show that they involve what can be interpreted as multiphase Katz centrality. Focusing on two phases, we analytically derive Nash equilibrium investment strategies, and the extent of loss that a camp would incur if it acted myopically. Our simulation study affirms that nodes attributing higher weightage to initial biases necessitate higher investment in the first phase, so as to influence these biases for the terminal phase. We then study the setting in which a camp's influence on a node depends on its initial bias. For single camp, we present a polynomial time algorithm for determining an optimal way to split the budget between the two phases. For competing camps, we show the existence of Nash equilibria under reasonable assumptions, and that they can be computed in polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.