A novel loading method was applied to explore selective effects of externally added weight (W), weight and inertia (W+I), and inertia (I) on maximum counter-movement jumps (CMJ) performed with arm swing. Externally applied extended rubber bands and/or loaded vest added W, W+I, and I corresponding to 10–40% of subjects' body mass. As expected, an increase in magnitude of all types of load was associated with an increase in ground reaction forces (GRF), as well as with a decrease in both the jumping performance and power output. However, of more importance could be that discernible differences among the effects of W, W+I, and I were recorded despite a relatively narrow loading range. In particular, an increase in W was associated with the minimal changes in movement kinematic pattern and smallest reduction of jumping performance, while also allowing for the highest power output. Conversely, W+I was associated with the highest ground reaction forces. Finally, the lowest maxima of GRF and power were associated with I. Although further research is apparently needed, the obtained finding could be of potential importance not only for understanding fundamental properties of the neuromuscular system, but also for optimization of loading in standard athletic training and rehabilitation procedures.