The purpose of this article is to present a new broadband Mueller ellipsometer designed to work in the midinfrared range, from 3 to 14 microns. The Mueller ellipsometer, which can be mounted in reflection or in transmission configuration, consists of a polarization state generator (PSG), a sample holder, and a polarization state analyzer (PSA). The PSG consists in one linear polarizer and a retarder sequentially rotated to generate a set of four optimal polarization states. The retarder consists in a bi-prism made of two identical Fresnel rhombs disposed symmetrically and joined by optical contact, giving the ensemble a "V" shape. Retardation is induced by the four total internal reflections that the beam undergoes when it propagates through the bi-prism. Total internal reflection allows to generate a quasi-achromatic retardation. The PSA is identical to the PSG, but with its optical elements mounted in reverse order. After a measurement run, the instrument yields a set of sixteen independent values, which is the minimum amount of data required to calculate the Mueller matrix of the sample. The design of the Mueller ellipsometer is based on the optimization of an objective criterion that allows minimizing the propagation of errors from raw data to the Mueller matrix of the sample. The pseudo-achromatic optical elements ensure a homogeneous quality of the measurements for all wavelengths. The performance of the Mueller ellipsometer in terms of precision, and accuracy, is discussed and illustrated with a few examples.