2017
DOI: 10.1007/s11081-017-9362-5
|View full text |Cite
|
Sign up to set email alerts
|

Optimal packing of material flow on conveyor belts

Abstract: We are interested in an optimal packing density problem for material flows on conveyor belts in two spatial dimensions. The control problem is concerned with the initial configuration of parts on the belt to ensure a high overall flow rate and to further reduce congestion. An adjoint approach is used to compare the optimization results from the microscopic model based on a system of ordinary differential equations with the corresponding macroscopic model relying on a hyperbolic conservation law. Computational … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
2
1
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 25 publications
(28 reference statements)
0
4
0
2
Order By: Relevance
“…This system arises from the implicit treatment of the diffusion term in the forward system (8). It is the main difference to adjoints for purely hyperbolic equations where the Lagrange parameters in step s − 1 in the backward system are simply obtained as a convex combination of those from step s, see Erbrich et al 2018. Proceeding further, we differentiate the Lagrangian with respect to ρs ij to get Again, rearranging terms yields Finally, we differentiate the Lagrangian with respect to s ij to obtain…”
Section: Solving the Coarse Model Optimization Problemmentioning
confidence: 99%
See 1 more Smart Citation
“…This system arises from the implicit treatment of the diffusion term in the forward system (8). It is the main difference to adjoints for purely hyperbolic equations where the Lagrange parameters in step s − 1 in the backward system are simply obtained as a convex combination of those from step s, see Erbrich et al 2018. Proceeding further, we differentiate the Lagrangian with respect to ρs ij to get Again, rearranging terms yields Finally, we differentiate the Lagrangian with respect to s ij to obtain…”
Section: Solving the Coarse Model Optimization Problemmentioning
confidence: 99%
“…In the following, the control of a material flow system with a conveyor belt is considered. Similar control problems have been investigated in Erbrich et al (2018). We use the microscopic model proposed in Göttlich et al (2014) that describes the transport of homogeneous parts with mass m and radius R on a conveyor belt Ω ⊂ ℝ 2 with velocity v T = (v (1) T , 0) T ∈ ℝ 2 .…”
Section: Materials Flowmentioning
confidence: 99%
“…This system arises from the implicit treatment of the diffusion term in the forward system (8). It is the main difference to adjoints for purely hyperbolic equations where the Lagrange parameters in step s − 1 in the backward system are simply obtained as a convex combination of those from step s, see [18]. Proceeding further, we differentiate the Lagrangian with respect to ρs ij to get…”
Section: Macroscopic Lagrangianmentioning
confidence: 99%
“…Vorarbeiten zur Optimierung des Materialflusses des makroskopischen Modells finden sich im Bereich "optimal packing" (vgl. [4]). Hier wird bei gegebener Bandgeschwindigkeit die Anordnung der Stückgüter in einem vorgegebenen Bereich optimiert, sodass diese möglichst schnell den Bereich verlassen.…”
Section: K 23 Stand Der Optimierungunclassified
“…Zusätzliche Stellgrößen sowie Nebenbedingungen können eingeführt werden. Anstelle der Optimierung der Bandgeschwindigkeit kann zusätzlich auch eine optimale initiale Positionierung der Güter auf einzelnen Zuführungen mit dem makroskopischen Modell berechnet werden (siehe [4]). Zukünftig wird eine Hardware-in-the-Loop Simulation mit einer realen Steuerung betrachtet, um die echtzeitkritische Berechnung des Simulationsmodells zu untersuchen.…”
Section: Zusammenfassung Und Ausblickunclassified