We are interested in an optimal packing density problem for material flows on conveyor belts in two spatial dimensions. The control problem is concerned with the initial configuration of parts on the belt to ensure a high overall flow rate and to further reduce congestion. An adjoint approach is used to compare the optimization results from the microscopic model based on a system of ordinary differential equations with the corresponding macroscopic model relying on a hyperbolic conservation law. Computational results highlight similarities and differences of both optimization models and emphasize the benefits of the macroscopic approach.
We introduce a macroscopic model for a network of conveyor belts with various speeds and capacities. In a different way from traffic flow models, the product densities are forced to move with a constant velocity unless they reach a maximal capacity and start to queue. This kind of dynamics is governed by scalar conservation laws consisting of a discontinuous flux function. We define appropriate coupling conditions to get wellposed solutions at intersections and provide a detailed description of the solution. Some numerical simulations are presented to illustrate and confirm the theoretical results for different network configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.