2020
DOI: 10.1070/sm9361
|View full text |Cite
|
Sign up to set email alerts
|

Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric

Abstract: We study the geometry of the metric space of compact subsets of considered up to an orientation-preserving motion. We show that, in the optimal position of a pair of compact sets (for which the Hausdorff distance between the sets cannot be decreased), one of which is a singleton, this point is at the Chebyshev centre of the other. For orientedly similar compacta we evaluate the Euclidean Gromov-Hausdorff distance between them and prove that, in th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 9 publications
0
0
0
Order By: Relevance