In isogenic microbial populations, phenotypic variability is generated by a combination of stochastic mechanisms, such as gene expression, and deterministic factors, such as asymmetric segregation of cell volume. Here we address the question: how does phenotypic variability of a microbial population affect its fitness? While this question has previously been studied for exponentially growing populations, the situation when the population size is kept fixed has received much less attention, despite its relevance to many natural scenarios. We show that the outcome of competition between multiple microbial species can be determined from the distribution of phenotypes in the culture using a generalization of the well-known EulerâLotka equation, which relates the steady-state distribution of phenotypes to the population growth rate. We derive a generalization of the EulerâLotka equation for finite cultures, which relates the distribution of phenotypes among cells in the culture to the exponential growth rate. Our analysis reveals that in order to predict fitness from phenotypes, it is important to understand how distributions of phenotypes obtained from different subsets of the genealogical history of a population are related. To this end, we derive a mapping between the various ways of sampling phenotypes in a finite population and show how to obtain the equivalent distributions from an exponentially growing culture. Finally, we use this mapping to show that species with higher growth rates in exponential growth conditions will have a competitive advantage in the finite culture.