Aiming at the identification of coal and gas outburst risk, using the advantages of the clone selection algorithm (CSA), such as self-adaptation and robustness, and the characteristics of fast convergence of particle swarm optimization (PSO) algorithm, the complex decoding problem, and mutation process brought by CSA binary coding are used. It is difficult to control the problem. Using PSO optimization, the problem of abnormal detection and identification in coal and gas outburst monitoring is developed and studied, and a CSA coal and gas outburst risk anomaly detection and identification model based on PSO optimization variation is established. The model uses the coal and gas outburst index data as a collection of antigen-stimulated antibodies to achieve abnormal detection and identification of measured data. With the help of the measured data, the verification results show that the model can effectively detect and identify the risk of coal and gas outburst, and the identification results are consistent with the risk of coal and gas outburst in the field. It can be used as an effective risk identification model to guide coal mining work.