We obtain sharp weighted estimates for solutions of the equation ∂ u = f in a lineally convex domain of finite type. Precisely we obtain estimates in the spaces L p (Ω,δ γ ), δ being the distance to the boundary, with two different types of hypothesis on the form f : first, if the data f belongs to L p Ω,δ γ Ω , γ > −1, we have a mixed gain on the index p and the exponent γ; secondly we obtain a similar estimate when the data f satisfies an apropriate anisotropic L p estimate with weight δ γ+1 Ω . Moreover we extend those results to γ = −1 and obtain L p (∂ Ω) and BMO(∂ Ω) estimates. These results allow us to extend the L p (Ω,δ γ )-regularity results for weighted Bergman projection obtained in [CDM14b] for convex domains to more general weights.2010 Mathematics Subject Classification. 32T25, 32T27.