The carbon cycle within a terrestrial ecosystem is a pivotal functional process that drives ecosystem evolution, and the precipitation pattern variations exert a profound influence on it. To comprehensively assess the response of carbon release in the global terrestrial ecosystem to water variation, we performed a global meta-analysis by extracting data from 144 publications. Additionally, we incorporated various moderators to elucidate the heterogeneity observed in the data. The results showed that soil carbon release was highly sensitive to water variation, with drying and moisturizing treatments responding differently to water variability. Specifically, drought inhibited the soil carbon release of terrestrial ecosystems (24% reduction in effect size), but precipitation promoted it (11% increase in effect size). Moreover, this sensitivity could be affected by other ambient factors, depending on water manipulation (drying or moisturizing treatment). In moisturizing treatment cases, ambient precipitation, altitude, and vegetation type more or less affected the sensitivity of soil carbon release to a water increase. However, in drying treatment cases, these factors had no significant influence on the water sensitivity of soil carbon release. Unlike the above ambient factors, a temperature increase strengthened this sensitivity in both of the treatments. In addition, our study also showed that the response of carbon release to water variation did not depend on the substrate type or the carbon–nitrogen ratio (C/N) of the substrates, revealing that these effect factors on carbon release on the local scale could be overshadowed by water conditions. Overall, water variation positively affected soil carbon release on the global scale. Particularly, drought had a strong controlling effect on carbon release over the other environmental factors. Therefore, the impact of soil water loss on carbon release should be of great concern for the management of ecosystems and the prediction of carbon release models, especially when high temperatures and drought have been occurring more and more frequently on the planet in recent years.