1978
DOI: 10.1109/tc.1978.1674957
|View full text |Cite
|
Sign up to set email alerts
|

Optimal Sorting Algorithms for Parallel Computers

Abstract: ABSTRACT:The problem of sorting a sequence of n elements on a parallel computer with k processors is considered. The algorithms we present can all be run on a single instruction stream multiple data stream computer. For large n, each achieves an asymptotic speed-up ratio of k with respect to the best sequential algorithm. This linear (in k) speed-up is optimal in the number of processors used.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
41
0
7

Year Published

1988
1988
2003
2003

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 135 publications
(48 citation statements)
references
References 7 publications
0
41
0
7
Order By: Relevance
“…[2] 10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000 [3] 00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100 [4] 00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010 [5] 00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011 [6] 00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000 [7] 00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000 [8] 00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100 [9] 00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000…”
Section: Output: A[ ] ( the Array In Sorted Order) *) Beginmentioning
confidence: 99%
See 1 more Smart Citation
“…[2] 10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000 [3] 00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100 [4] 00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010 [5] 00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011 [6] 00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000 [7] 00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000 [8] 00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100 [9] 00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000…”
Section: Output: A[ ] ( the Array In Sorted Order) *) Beginmentioning
confidence: 99%
“…Many fundamental processes in computing and communication systems require sorting of data. Sorting network play a key role in the areas of parallel computing, multi-access memories and multiprocessing [3], [4], [5], [6], [11], [13], [14], [19].…”
Section: Introductionmentioning
confidence: 99%
“…Multiport bitonic sort can be further improved by using a linear-time serial merge instead of a bitonic merge in order to execute the merges that occur entirely within a processor [4]. We estimated that the time for a processor to merge two sorted sequences of length (n/2 p) to form a single sorted sequence of length (n/p) is approximately (n/p) · 10A.…”
Section: Batcher's Bitonic Sortmentioning
confidence: 99%
“…; . = (l-(o)u. y + co. communications, in a manner similar, to that used in the odd-even transposition sort [4]. Labeling of connected components in an image can be done by using the bidirectional communication to merge labels in the subimages computed by individual cells [17].…”
Section: Gridmentioning
confidence: 99%