In this paper, we propose a new type of viscosity solutions for fully nonlinear path-dependent PDEs. By restricting the solution to a pseudo-Markovian structure defined below, we remove the uniform non-degeneracy condition needed in our earlier works (Ekren, I, Touzi, N, Zhang, J, Ann Probab, 44:1212-1253 Ekren, I, Touzi, N, Zhang, J, Ann Probab, 44:2507-2553) to establish the uniqueness result. We establish the comparison principle under natural and mild conditions. Moreover, we apply our results to two important classes of PPDEs: the stochastic HJB equations and the path-dependent Isaacs equations, induced from the stochastic optimization with random coefficients and the path-dependent zero-sum game problem, respectively.