We describe the first realization of liquid chromatographic separation in a droplet-based microfluidic system and develop a novel mode for microchip-based chromatography named as droplet-array liquid-liquid chromatography. In this system, two arrays of picoliter-scale droplets immobilized on both sidewalls of a microchannel with droplet trapping technique served as the stationary phase in chromatographic separation, while the other immiscible phase flowing in the microchannel served as the mobile phase. The chromatographic separation was achieved on the basis of multiple extraction and elution of analytes between the droplet array stationary phase and the mobile phase. The proof-of-concept study of the droplet-array LC system was performed in the separation of fluoranthene and benzo[b]fluoranthene. Under the optimum conditions, the two analytes were separated within 26 min with separation efficiencies of 112 μm and 119 μm plate height, respectively. The advantages of the present system include simple structure, low driving pressure, and relatively high sample capacity. It can also provide a useful platform for LC theory study and educational purposes by allowing the researchers and students to directly "see" the continuous extraction and elution process of a chromatographic separation.