Industrially important di‐carboxylic acids are synthesized from mono‐carboxylic unsaturated and unsaturated fatty acids. In this study, the aim is to perform the simultaneous catalytic oxidative C=C cleavage of oleic acid (OA) to azelaic acid and pelargonic acid, and oxidation of the terminal methyl group in pelargonic acid to azelaic acid using cobalt‐ and manganese‐acetate as catalyst, hydrogen bromide as co‐catalyst and air in acetic acid at elevated pressure (2.8–5.8 barg) and temperature (353–383 K). Oxygen solubility is determined under varying pressure, temperature and OA loading. The effect of OA loading, pressure and temperature on OA conversion and azelaic acid selectivity is studied by varying one variable at a time; however, the presence of the synergistic effect of the catalyst and co‐catalyst is investigated by central composite design assisted response surface methodology. Oxidation of terminal methyl group in saturated fatty acid is also confirmed by the oxidation of stearic acid to octadecanedioic acid using identical oxidation conditions of OA. Oxidation products of fatty acids are quantified by gas chromatographic analysis. The innovation of the work is thus the ability of the catalytic system to perform a total oxidation of a terminal methyl group of the hydrocarbon chain. OA oxidation kinetics relating to catalyst and co‐catalyst concentration along with oxygen solubility at elevated temperature and pressure is established. The frequency factor and activation energy for OA oxidation is determined using the Arrhenius equation.