2012
DOI: 10.5120/8860-2822
|View full text |Cite
|
Sign up to set email alerts
|

Optimal Tuning of PID Controller for DC Motor using Bio-Inspired Algorithms

Abstract: This paper presents the performance comparison between the various soft computing techniques used for optimization of the PID controllers, implemented for speed control system for a DC motor. PID controllers are extensively used in industrial control because of their simplicity and robustness, but when industrial control is imperilled by external glitches, leads to the instability of the system. PID controller optimization using soft-computing algorithms lays emphases on obtaining the best possible PID paramet… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
3

Year Published

2017
2017
2022
2022

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 10 publications
0
1
0
3
Order By: Relevance
“…Cascaded DC motor controllers are optimized using multi-objective optimization evolutionary algorithms (MOEAs) selecting different solution on the Pareto-set in [29]. Optimal PID controllers are developed by NSGA-II algorithm, and compared to the traditional Ziegler Nichols methods in [30] and [23].…”
Section: Controller Multi-objective Optimizationmentioning
confidence: 99%
“…Cascaded DC motor controllers are optimized using multi-objective optimization evolutionary algorithms (MOEAs) selecting different solution on the Pareto-set in [29]. Optimal PID controllers are developed by NSGA-II algorithm, and compared to the traditional Ziegler Nichols methods in [30] and [23].…”
Section: Controller Multi-objective Optimizationmentioning
confidence: 99%
“…Beberapa metode optimasi berbasis metode konvensional maupun metode cerdas telah banyak digunakan untuk mengoptimasi parameter PID pada motor listrik, diantaranya Artificial Bee Colony [3], Evolutionary Algorithm [4,5,9], Particle Swarm Optimization [6], Bio-Inspired Algorithm [7], Bacterial Foraging [8], Tabu Search [10], Fuzzy Logic [11,12], Cuckoo Search [13] dan Flower [14]. Terdapat dua langkah kunci di algoritma ini, yaitu penyerbukan global dan penyerbukan lokal.…”
Section: Pendahuluanunclassified
“…Optimization [4,8], Evolutionary Algorithm [7,11], Bio-Inspired Algorithm [9], Tabu Search [12], Bacterial Foraging [10], Fuzzy Logic [13,14], Cuckoo Search [15], dan Flower Algorithm [16]. Dari beberapa penelitian yang telah dilakukan menunjukkan pengembangan metode penalaan parameter PID dengan menggunakan metode kecerdasan buatan.…”
Section: Jurnal Nasional Teknik Elektro 77unclassified