This paper studies workforce assignment problem for battery production in a company in Turkey. Several types of batteries are produced in the studied company. Mostly, the operations are semi-automated. In the production process, the workers are assigned to multiple operations irregularly based on the priority of productions. In the company, average utilization of worker is low, and average cycle time of a product is high due to inefficient allocation of the workforce within the operations. In order to analyze the main system problem, we simulate the system and observe the queue lengths to identify the bottlenecks. By dynamic assignment of workers at stations based on real time queue conditions, the workloads can be balanced throughout the production lines. In this project, a simulation-based system improvement is completed by applying: (i) dynamic utilization of workforce to reduce average cycle time of a battery, (ii) assignment of parallel workforce where they can work for the same operation simultaneously, and (iii) observation of real-time queue lengths of stations. Three dynamic assignment policies are developed and compared with each other. The best policy providing minimum cycle time for a battery production is selected to be the best.