Human movements are characterized by highly non-linear and multi-dimensional interactions within the motor system. Therefore, the future of human movement analysis requires procedures that enhance the classification of movement patterns into relevant groups and support practitioners in their decisions. In this regard, the use of data-driven techniques seems to be particularly suitable to generate classification models. Recently, an increasing emphasis on machine-learning applications has led to a significant contribution e.g. in increasing the classification accuracy. In order to ensure the generalizability of the machine-learning models, different data preprocessing steps are usually carried out to process the measured raw data before the classifications. In the past, various methods have been used for each of these preprocessing steps. However, there are hardly any standard procedures or rather systematic comparisons of these different methods and their impact on the classification accuracy. Therefore, the aim of this analysis is to compare different combinations of commonly applied data preprocessing steps and test their effects on the classification accuracy of gait patterns.A publicly available dataset on intra-individual changes of gait patterns was used for this analysis. Forty-two healthy subjects performed 6 sessions of 15 gait trials for one day. For each trial, two force plates recorded the three-dimensional ground reaction forces (GRF). The data was preprocessed with the following steps: GRF filtering, time derivative, time normalization, data reduction, weight normalization and data scaling. Subsequently, combinations of all methods from each individual preprocessing step were analyzed and compared with respect to their prediction accuracy in a six-session classification using Support Vector Machines, Random Forest Classifiers and Multi-Layer Perceptrons. 1 arXiv:1911.04335v1 [cs.LG] 11 Nov 2019 Burdack et al.
Data Preprocessing in Gait ClassificationThe results indicate that filtering GRF data and a supervised data reduction (e.g., using Principal Components Analysis) lead to increased prediction accuracies of the machine-learning classifiers. Interestingly, the weight normalization and the number of data points (above a certain minimum) in the time normalization does not have a substantial effect. In conclusion, the present results provide first domain-specific recommendations for commonly applied data preprocessing methods and might help to build more comparable and more robust classification models based on machine learning that are suitable for a practical application.