An improved characteristic set algorithm for solving Boolean polynomial systems is proposed. This algorithm is based on the idea of converting all the polynomials into monic ones by zero decomposition, and using additions to obtain pseudo-remainders. Three important techniques are applied in the algorithm. The first one is eliminating variables by new generated linear polynomials. The second one is optimizing the strategy of choosing polynomial for zero decomposition. The third one is to compute add-remainders to eliminate the leading variable of new generated monic polynomials. By analyzing the depth of the zero decomposition tree, we present some complexity bounds of this algorithm, which are lower than the complexity bounds of previous characteristic set algorithms. Extensive experimental results show that this new algorithm is more efficient than previous characteristic set algorithms for solving Boolean polynomial systems.