This article is devoted to the issues of creating an adaptive intelligent system, for monitoring and controlling the technological process for electrochemical corrosion protection of main pipelines (MP), which has been designed for remote control of electrochemical protection (EChP) parameters and their optimization as well as adaptive control of the parameters of cathodic protection stations while taking into account changes in external conditions. The multi-objective problem of optimizing the operating modes of cathodic protection stations (CPS) is considered because optimization is carried out according to both the criterion of optimal distribution of the protective potential (uniform distribution of the protective total (pipe-to-soil) potential along the length of the pipeline) and to the criterion of the minimum total protective current of stations. The structure of the distributed electrochemical protection system is described in the article. A more complete picture of the protection of the pipeline and solving the problems of optimizing the electrochemical protection modes in real time is possible due to remote monitoring of control and measuring points (CMP) in the middle of the pipeline between neighboring cathodic protection stations, as well as in all corrosion and hazardous zones where they are also installed. In addition to the often-used GSM/GPRS networks in electrochemical protection systems, an energy-efficient LPWAN (Low-Power Wide-Area Network) data transmission network is also used and data collection is carried out using a cloud IoT platform. The functionality of the system is described, web application screens are shown in various operating modes for remote monitoring and control of the protective parameters of cathodic protection stations is reported. Analytical data processing for the tasks assessing the protection of objects in the pipeline system against corrosion are also shown. The system ensures that the electrochemical protection process is maintained at an optimal level between the destructive zones of “underprotection” and “overprotection”, taking into account monitoring data, geological conditions at the pipeline site, climatic or seasonal changes and other factors. In general, this system provides an increase in the reliability of the electrochemical protection system as a whole and, accordingly, it prevents possible emergency situations on the pipeline system while also reducing the cost of pipeline maintenance due to the reliability and continuity of protection.