2015
DOI: 10.1016/j.ecoleng.2015.07.006
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of conditions (pH and temperature) for Lemna gibba production using fuzzy model coupled with Mamdani’s method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 21 publications
0
2
0
2
Order By: Relevance
“…Oleh sebab itu, jika diberikan suatu himpunan fuzzy dalam range tertentu sebagai outpu, maka akan terlihat seperti pada Gambar 2 berikut: Gambar 2. Fuzzy model structure [8] Tabel 1. Pedoman penilaian perilaku kerja…”
Section: F Metode Additive (Sum)unclassified
“…Oleh sebab itu, jika diberikan suatu himpunan fuzzy dalam range tertentu sebagai outpu, maka akan terlihat seperti pada Gambar 2 berikut: Gambar 2. Fuzzy model structure [8] Tabel 1. Pedoman penilaian perilaku kerja…”
Section: F Metode Additive (Sum)unclassified
“…Mahasiswa [17] C. Aturan Logika Kelulusan Mahasiswa Untuk Menentukan tingkat kelulusan mahasiswa tentunya harus dibuat aturan logika yang akan digunakan sebagai acuan dalam pengolahan data [18], [19]. Aturan logika yang digunakan ini dibuat sesuai dengan himpunan yang digunakan pada variabel jumlah penerimaan peserta wisuda dan jumlah mahasisawa sehingga dapat ditentukan suatu kondisi atau status jumlah yang lulus [20].…”
Section: Gambar 1 Proses Fuzzy Tsukamoto Kelulusanunclassified
“…The membership function can be the composition of various shapes of membership functions, the fuzzy classes for input ( X i ) and output ( Y i ) data are expressed in A ip and C iq , respectively, where p and q are the total number of fuzzy classes for the input and output data. The mechanism of the inference engine is defined by Mamdani’s method (Suthar et al , 2015), which gives the outputs in the form of a fuzzy set rather than a linear mathematical expression. Since the set of input and output parameters has been fuzzified using (1), the value of membership functions can be evaluated according to the antecedent and consequence of given fuzzy rules.…”
Section: Design Of the Iotrmsmentioning
confidence: 99%