In this paper, a novel temperature dependent electromagnetic modeling for the design of airborne radome is presented. A smooth spatial temperature distribution on the radome surface is modeled using a piecewise cubic hermite interpolating polynomial as well as piecewise linear interpolation. The temperature gradient across the radome wall is modeled using an inhomogeneous planar layer. The performance of a radome is computed using the 3D ray tracing method in conjunction with aperture integration. A unique radome wall configuration is obtained for each ray for the accurate representation of a hot radome. A streamlined radome designed using the proposed model shows a significant performance improvement over the radome designed at the average temperature. The designed radome has the minimum insertion loss of 0.015 dB and the maximum boresight error of 1.8 mrad. The proposed method can be easily used with the experimentally obtained temperature distribution to predict the changes in radome performance in changing hypersonic environment.