In this paper, a novel temperature dependent electromagnetic modeling for the design of airborne radome is presented. A smooth spatial temperature distribution on the radome surface is modeled using a piecewise cubic hermite interpolating polynomial as well as piecewise linear interpolation. The temperature gradient across the radome wall is modeled using an inhomogeneous planar layer. The performance of a radome is computed using the 3D ray tracing method in conjunction with aperture integration. A unique radome wall configuration is obtained for each ray for the accurate representation of a hot radome. A streamlined radome designed using the proposed model shows a significant performance improvement over the radome designed at the average temperature. The designed radome has the minimum insertion loss of 0.015 dB and the maximum boresight error of 1.8 mrad. The proposed method can be easily used with the experimentally obtained temperature distribution to predict the changes in radome performance in changing hypersonic environment.
This paper presents the effect of gimbal geometry parameters on the electromagnetic performance of streamlined radome for airborne applications. The work demonstrates that the gimbal position significantly affects the boresight error performance. The optimization of gimbal position is performed, and the resultant boresight error is limited to 1.5 mrad while keeping the insertion loss below 0.25 dB over the entire antenna scan angle range. The analysis of the antenna-radome system is carried out using the 3D ray tracing method. This work shows that the gimbal geometry parameters provide additional degree of freedom for improving radome performance parameters and can be applied to both the gimbal mounted and electronically scanning antennas enclosed by streamlined radomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.