Numerical modelling of a Pr 3+ -doped chalcogenide glass fibre laser is presented in this paper. The spectroscopic parameters are extracted from in-house prepared Pr 3+ doped selenide-chalcogenide glass samples and used in the modelling. In this contribution, particular attention is paid to a novel resonant pumping scheme. The modelled laser performance is tested as a function of pump wavelength, fibre length, signal wavelength, fibre background loss and output coupler reflectivity. The modelling results show that the proposed resonant pumping scheme, which might be achieved in practice using a high power QCL pump, allows for a significant reduction in the laser threshold and an increase in the laser efficiency. A slope efficiency of 54% is calculated when the fibre losses are brought down to 1 dB/m.