2023
DOI: 10.33558/piksel.v11i1.5886
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of Random Forest Prediction for Industrial Energy Consumption Using Genetic Algorithms

Abstract: Abstract   Saving electrical energy consumption in industries is crucial; hence, the prediction of industrial energy consumption needs to be performed. The random forest method can be applied to steel industry data to predict energy consumption. The purpose of this prediction is to increase energy savings in industries and optimize the performance of the random forest method. The results of the random forest show that the algorithm can predict energy consumption in industries effectively; however, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 0 publications
0
0
0
Order By: Relevance