2011
DOI: 10.1134/s1063782611030195
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of the configuration of a symmetric three-barrier resonant-tunneling structure as an active element of a quantum cascade detector

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0
1

Year Published

2012
2012
2021
2021

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 13 publications
(19 citation statements)
references
References 11 publications
0
18
0
1
Order By: Relevance
“…Такий підхід, за-пропонований у роботах [5,7,14], до оптимі-зації геометричного дизайну активних зон і каскадів багатокаскадних наноприладів, що працюють у одномодовому режимі, може бути узагальнений на випадок оптимізації геоме-тричного дизайну робочого елемента ККЛ за умови реалізації двофотонної генерації.…”
Section: аналіз отриманих результатівunclassified
“…Такий підхід, за-пропонований у роботах [5,7,14], до оптимі-зації геометричного дизайну активних зон і каскадів багатокаскадних наноприладів, що працюють у одномодовому режимі, може бути узагальнений на випадок оптимізації геоме-тричного дизайну робочого елемента ККЛ за умови реалізації двофотонної генерації.…”
Section: аналіз отриманих результатівunclassified
“…Theoretical study of electronic band structure of the GaAs/AlAs superlattice with uniformly distributed tunnel-connected QDs was done in [5,6]. The relations of wave vector dependence of the electron energy were obtained.…”
Section: Introductionmentioning
confidence: 99%
“…It was established that when the widths of nano-structure outer barriers were bigger than 3-4 nm, the resonance energies in open and closed models were almost the same and the resonance widths were two-three orders smaller than the energies. Considering the widths of outer barriers of a three-barrier RTS (the active bands of experimental QCD) as rather big (3-6 nm) [6], we develop the theory of electron-I-phonon interaction using the model of closed three-barrier RTS (figure 1) with fixed effective masses m (z) = {m w (II, IV); m b (I, III, V)} and rectangular potential energy profile neglecting the small decay rate Expressing the electron wave function in the form…”
Section: Hamiltonian and Fourier Image Of Green's Function Of The Sysmentioning
confidence: 99%
“…The effect of phonons on the transport properties of electronic current through RTS was mainly investigated for the two-and three-barrier nano-structures [5][6][7]. Studying the probabilities of quantum transitions using the Fermi golden rule, it is enough to use the Hamiltonian of electron-phonon interaction in the representation of the second quantization over the phonon variables only, obtained by Mori and Ando [8] for a double heterostructure.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation