2020
DOI: 10.1088/1742-6596/1641/1/012090
|View full text |Cite
|
Sign up to set email alerts
|

Optimization Of The Decision Tree Algorithm Used Particle Swarm Optimization In The Selection Of Digital Payments

Abstract: One of the developments of information technology in Indonesia was the developments in Fintech (financial technology) that made it easy for people to access financial products, facilitated online transactions and also increased financial literacy. The development of fintech occurs when the use of cash was reduced to cashless when making payment transactions so that transactions would be more practical, easy, safe and comfortable. The purpose of this study to improve the quality of decision tree modeling and ac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
4

Year Published

2022
2022
2023
2023

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(10 citation statements)
references
References 4 publications
0
3
0
4
Order By: Relevance
“…Particle swarm optimization generally chooses the maximum number of iterations or meets a predefined minimum classification condition. The specific algorithm flow is as follows [11][12] (1) Begin. Input the initial data of the distribution network, obtain the information of each node and branch, and determine the upper and lower limits of the voltage of each node.…”
Section: Algorithm Processmentioning
confidence: 99%
“…Particle swarm optimization generally chooses the maximum number of iterations or meets a predefined minimum classification condition. The specific algorithm flow is as follows [11][12] (1) Begin. Input the initial data of the distribution network, obtain the information of each node and branch, and determine the upper and lower limits of the voltage of each node.…”
Section: Algorithm Processmentioning
confidence: 99%
“…Algoritma Decision Tree C4.5 seperti dengan namanya merupakan metode klasifikasi pohon keputusan. Decision Tree C4.5 merupakan proses klasifikasi memilih atribut dari dataset sebagai root node dan membuat cabang pada setiap nilai atribut yang digunakan dalam membagi kasus pada setiap cabang, kemudian melakukan proses yang sama pada setiap cabang sampai didapatkan kelas yang sama untuk semua kasus pada cabang (Ariyati et al, 2020). Algoritma ini mempunyai masukan terdiri dari data latih dan sampel.…”
Section: Decision Tree C45unclassified
“…*) Penulis korespondensi: dafizadi77@gmail.com Salah satu metode klasifikasi yang sering digunakan dalam membuat klasifikasi pada data adalah Decision Tree C4.5. C4.5 merupakan proses klasifikasi memilih atribut dari dataset sebagai root node dan membuat cabang pada setiap nilai atribut yang digunakan dalam membagi kasus pada setiap cabang, kemudian melakukan proses yang sama pada setiap cabang sampai didapatkan kelas yang sama untuk semua kasus pada cabang (Ariyati et al, 2020). Klasifikasi menggunakan Decision Tree C4.5 telah banyak digunakan di berbagai penelitian.…”
unclassified
See 1 more Smart Citation
“…Another study that uses the C4.5 algorithm is also shown good performance for classifying the eligibility value of new prospective debtors [12] and exceeding Naïve Bayes in predicting the future behavior of the customers [13]. The C4.5 algorithm can also be optimized with PSO to select parameters/features [14]- [18]. This feature selection is done to avoid unrelated features that can reduce the performance of the classifier model.…”
Section: Introductionmentioning
confidence: 99%